Methylene acetals as protecting groups - an improved preparation method

Marcella Guiso, Carmela Procaccio, Maria Rosaria Fizzano, Francesco Piccioni.

Dipartimento di Chimica, Universita "La Sapienza". P.le Aldo Moro 5, I-00185 Roma, Italy.

Abstract

A facile method to protect vic diols, 1,3 diols and other hydroxyl functions as methylene acetals is achieved by treating the relative substrates with POCl_{3} or SOCl_{2} in DMSO. The good yields obtained, the good solubility of many organic compounds in DMSO and the easy hydrolysis of the 1,3,5-trioxaepane derivatives prepared from trans vic diols make useful this protecting method. © 1997 Published by Elsevier Science Lid.

The methylene acetals are widely used as protection of diolic functions. To avoid the not always suitable classical reaction with $\mathrm{CH}_{2} \mathrm{O}$ in protic acid conditions, it has been reported the preparation of methylene acetals with $\mathrm{CH}_{2} \mathrm{Br}_{2} / \mathrm{KOH}$ in DMSO ${ }^{1}$ or with DMSO in organic solvents in the presence of a catalyst as NBS ${ }^{2}$, PPA^{3}, ($\left.\mathrm{CH}_{3}\right)_{3} \mathrm{SiCl}^{4}$, or $\mathrm{Br}_{2}{ }^{5}$. Some of these reactions need drastic conditions, others could cause side reactions if the substrates contained functional groups interacting with the catalyst. We here report an improved method which employs DMSO as source of methylene in the presence of POCl_{3} or SOCl_{2} as catalyst, requires mild conditions, short reaction time and generally does not cause side reactions.
This new methodology has been checked on four groups of compounds: acyclic diols, cyclic diols, carbohydrates and also monovalent alcohols from which intermolecular acetals has been obtained (see table 1). Finally it was checked the stability of dioxolane, dioxane, and trioxaepane cycles obtained towards acid hydrolytic condition

Group 1: 1,3-Aliphatic acyclic diols.

We submitted to this reaction the eritro (1a) and threo (1b) 1-phenyl-1,3-butane-diols. Both compounds were transformed with high yields into the corresponding 6-methyl-4-phenyl-1,3-dioxanes (2a and 2b). To test the selectivity of this reaction, we used as substrates also a complex natural compound as rifamycin S^{6} which showed a 1,3-diol function in its ansa-chain and many different functions in its molecule. We obtained with high yield the expected 1,3-dioxane derivative. No modifications were found in the other functions.

\begin{tabular}{|c|c|c|c|c|c|}
\hline Product \& \multicolumn{2}{|l|}{$$
\begin{gathered}
\text { Yleld (\%) } \\
\text { tmei (min) } \\
\mathrm{POCl}_{3} \quad \mathrm{SOCl}_{2} \\
\hline
\end{gathered}
$$} \& $$
\begin{gathered}
{[a]_{D}} \\
(c, s o l v .)
\end{gathered}
$$ \& Molecular
Formula \& $$
\begin{aligned}
& { }^{7} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \\
& \delta(\mathrm{ppmm})
\end{aligned}
$$

\hline 2a \& $$
\begin{aligned}
& 95 \\
& 30
\end{aligned}
$$ \& $$
\begin{aligned}
& 95 \\
& 90
\end{aligned}
$$ \& $$
\begin{gathered}
-20 \pm 2.1 \\
\left(1.1 . c^{2}+1+3\right)
\end{gathered}
$$ \& $\mathrm{C}_{11} \mathrm{H}_{4} \mathrm{O}_{2}$ (178.23) \& $1.36\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right) 1.87$ (ddd, $1 \mathrm{H}, \mathrm{J}=4.3,6.1,13.7 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{ax}$) 2.25 (ddd, $1 \mathrm{H}, \mathrm{J}=4.2,6.8,13.7 \mathrm{~Hz}, \mathrm{H}-$ $5 \mathrm{eq}) 4.10$ (ddq, $1 \mathrm{H}, \mathrm{J}=4.2,6.1,6.6 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{ax}) 4.69\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{O}\right.$) $5.00(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4.3,8.8 \mathrm{~Hz}, \mathrm{H}-$ $4 \mathrm{ax}) \mathbf{5 . 0 3}$ ($\left.\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{O}-\right) 7.30$ ($\mathrm{m}, 5 \mathrm{H}$, -pheny).

\hline 2b \& $$
\begin{aligned}
& \mathbf{8 0} \\
& \mathbf{3 0}
\end{aligned}
$$ \& $$
\begin{aligned}
& 85 \\
& 30
\end{aligned}
$$ \& $$
\begin{gathered}
1.5 \pm 1.3 \\
(1.2, \mathrm{CHC} 3)
\end{gathered}
$$ \& $\mathrm{C}_{n} \mathrm{H}_{4} \mathrm{O}_{2}$ (178.23) \& 1.27 (d, 3H, J=6.2 Hz, CH3) $1.71(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5 \mathrm{sax}, \mathrm{H}-5 \mathrm{eq}) 3.88(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{eq}) 4.59$ (dd, $1 \mathrm{H}, \mathrm{J}=2.7,11.3 \mathrm{~Hz}, \mathrm{H}-$ $4 \mathrm{ax}) 4.90\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{O}-\right) 5.23\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{OCH} \mathrm{O}_{2} \mathrm{O}\right) 7.34$ ($\mathrm{m}, 5 \mathrm{H}$, -pheny) .

\hline 2 c \& $$
\begin{aligned}
& 88 \\
& 120
\end{aligned}
$$ \& \& $$
\begin{gathered}
-12.5 \pm 12) \\
\left(1.2 . C^{-1(1)}\right)=
\end{gathered}
$$ \& $$
\begin{aligned}
& \mathrm{CH}_{2} \mathrm{O}_{4} \\
& (185.04)
\end{aligned}
$$ \& 2.17 (dd, 1H, J=3.4, $14.7 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{ax}$) 2.30 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{Zax}$) 2.40 (ddd, $1 \mathrm{H}, \mathrm{J}=2.4,7.8,14.7 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{eq}$) 2.66 (d , $1 \mathrm{H}, \mathrm{J}=11.9 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{eq}) 3.13(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}-1) 4.15(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{eq}) 4.32(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{sx}) 4.75(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{eq}) 4.78$ (s, $\left.1 \mathrm{H}, \mathrm{OCH}_{2}(\mathrm{exO}) \mathrm{O}\right) 5.19$ (s, $1 \mathrm{H},-\mathrm{OCH}_{2}($ endo $) \mathrm{O}$).

\hline 2d \& $$
\begin{aligned}
& 92 \\
& 30
\end{aligned}
$$ \& \& \& $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{0}$ (276.08) \& 3.46 (mc, 1H, H-5ax) 3.50 (mc, 1H, H-4ax) 3.77 (dd, $1 \mathrm{H}, \mathrm{J}=3.5,9.1 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{ax}$) 3.90 ($\mathrm{mc}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{ax}) 4.17$ (mc, 1H. $\mathrm{H}-3 \mathrm{ax}$) 4.20 (mc, 1H, $\mathrm{H}-2 \mathrm{eq}$) 4.86-5.09 ($9 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{O}$) 5.20 ($\mathrm{s}, 1 \mathrm{H},-\mathrm{OCH}_{2}$ (endo) O -).

\hline 2 e \& $$
\begin{aligned}
& 92 \\
& 30
\end{aligned}
$$ \& $$
\begin{aligned}
& 83 \\
& 30
\end{aligned}
$$ \& $$
\begin{aligned}
& 246.5 \pm 6.9 \\
& \left(0.5, \mathrm{CHC}_{3}\right)
\end{aligned}
$$ \& $\mathrm{C}_{10} \mathrm{HH}_{14} \mathrm{O}_{7}$

(248.09) \& 3.43 (s, $\left.3 \mathrm{H},-\mathrm{OCH}_{3}(\mathrm{ax})\right) 3.63$ (ps, 1H, H-5ax) 3.84 (dd, $1 \mathrm{H}, \mathrm{J}=1.7,12.6 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{ax}$) 3.93 (dd, $1 \mathrm{H}, \mathrm{J}=3.5,9.7 \mathrm{~Hz}$ $\mathrm{H}-3 \mathrm{ax}) 4.07$ (dd, $1 \mathrm{H}, \mathrm{J}=3.6,9.7 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{eq}) 4.11$ (dd, $1 \mathrm{H}, \mathrm{J}=3.0,12.6 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{eq}$) 4.13 ($1 \mathrm{H}, \mathrm{H}-4 \mathrm{eq}$) 4.73 (d, 1 H, $\left.\mathrm{J}=6.4 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{O}-\right) 4.86\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.8 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{O}\right) 4.91\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{O}\right) 4.99(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.6 \mathrm{~Hz}, \mathrm{H}$ 1eq) $5.02\left(\mathrm{~d}, 1 \mathrm{H}_{1} \mathrm{~J}=5.8 \mathrm{~Hz},-O C \mathrm{H}_{2} \mathrm{O}\right) 5.03\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz},-O \mathrm{OH}_{2} \mathrm{O}\right) 6.16\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz},-O \mathrm{OH}_{2} \mathrm{O}\right)$.

\hline 29 \& $$
\begin{aligned}
& 85 \\
& 120
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 70 \\
& 120
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
96.5 \pm 1.8 \\
(5.1, \mathrm{CHCL})
\end{gathered}
$$
\] \& $\mathrm{C}_{12} \mathrm{H}_{48} \mathrm{O}_{7}$ (248.09) \& $3.31(\mathrm{t}, \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{ax}) 3.40\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}(\mathrm{ax})\right) \mathbf{3 . 4 4}(\mathrm{dd}, \mathrm{H}, \mathrm{J}=9.0,10.3 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{ax}) 3.60(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=3.8$, $9.0 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{ax}) 3.71$ (td, $1 \mathrm{H}, \mathrm{J}=4.8,9.0 \mathrm{~Hz}, \mathrm{H}-5 a x) 3.93(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{ax}) 4.13$ (dd, $1 \mathrm{H}, \mathrm{J}=4.8,10.3 \mathrm{~Hz}, \mathrm{H}$ (feq) $4.80\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{O}\right) 4.80(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.8 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{eq}) 4.85\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.8 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{O}\right) 4.89(\mathrm{~d}$, $\left.1 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{O}\right) 5.03\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{O}-\right) 5.03\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.8 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{O}\right) 5.04(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.3$ $\mathrm{Hz}_{1}-\mathrm{OCH}_{2} \mathrm{O}-$).

\hline 2g \& $$
\begin{aligned}
& 80 \\
& 30
\end{aligned}
$$ \& \[

$$
\begin{gathered}
85 \\
120
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
85.6 \pm 1,3 \\
\left(0.9, \mathrm{c}_{1}\right)
\end{gathered}
$$
\] \& $\mathrm{CH}_{2} \mathrm{H}_{4} \mathrm{O}_{0}$ (218.08) \& $3.35\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}(\mathrm{ax})\right) \mathbf{3 . 3 6}(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{ax}) \mathbf{3 . 4 5}(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=9.0,10.3 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{ax}) 3.65(\mathrm{td}, 1 \mathrm{H}, \mathrm{J}=5.0$, $9.0 \mathrm{~Hz}, \mathrm{H}-5 a x) 3.90$ (dd, $1 \mathrm{H}, \mathrm{J}=1.0,5.7 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{eq}) 4.13$ (dd, $1 \mathrm{H}, \mathrm{J}=5.0,10.3 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{eq}) 4.25$ (dd, $1 \mathrm{H}, \mathrm{J}=5.7,9.0$ $\mathrm{Hz}, \mathrm{H}-3 \mathrm{3ax}) 4.60$ (d, $1 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{O}$) 4.93 (s, $1 \mathrm{H},-\mathrm{OCH}_{2}\left(\right.$ (exo) O -) 4.97 (s, $1 \mathrm{H},-\mathrm{OCH}_{2}($ endo $\left.) \mathrm{O}\right) 5.00$ (d, $\left.1 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{O}\right) 6.19(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{eq})$.

\hline 39 \& $$
\begin{aligned}
& 16 \\
& 30
\end{aligned}
$$ \& \[

$$
\begin{gathered}
10 \\
120
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
-13.6 \pm 0.6 \\
(4.4, \mathrm{CHCW}) \\
-8.6 \pm 0.2 \\
\left(4.4, \mathrm{CH}, \mathrm{OH}_{3}\right)
\end{gathered}
$$
\] \& $\mathrm{C}_{10} \mathrm{H}_{81} \mathrm{O}_{7}$ (248.09) \& 3.36 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}(\mathrm{ax})$) $3.57(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.5 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{ax}) 3.72$ (td, $\left.1 \mathrm{H}, \mathrm{J}=4.8,9.5 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{ax}\right) 3.88$ (dd, $1 \mathrm{H}, \mathrm{J}=9.5$, $10.2 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{ax}) 4.08$ (dd, $1 \mathrm{H}, \mathrm{J}=1.6,3.0 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{eq}) 4.13$ (dd, $1 \mathrm{H}, \mathrm{J}=4.8,10.2 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{eq}) 4.25$ (dd, $1 \mathrm{H}, \mathrm{J}=3.0$, $9.5 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{ax}) 4.67$ (d, 1H, J=6.3Hz, $-\mathrm{OCH}_{2} \mathrm{O}$) 4.73 (d, $1 \mathrm{H}, \mathrm{J}=1.6 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{ax}$) 4.75 (d, $1 \mathrm{H}, \mathrm{J}=5.5 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{O}-$ 4.97 (d, 1H, J=7.4 Hz, $-\mathrm{OCH}_{2} \mathrm{O}$) $5.01\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.5 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{O}^{-}\right) 6.06$ (d, $1 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{O}-$) 5.09 (d, 1 H , $\left.\mathrm{J}=7.4 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{O}-\right)$.

\hline 2 h \& $$
\begin{aligned}
& 55 \\
& \mathbf{3 0}
\end{aligned}
$$ \& \[

{ }_{80}^{85}

\] \& \& $\mathrm{C}_{13} \mathrm{H}_{2} \mathrm{O}_{2}$ (212.09) \& \[

$$
\begin{aligned}
& 1.00-1.55(\mathrm{~m}, 12 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5) 1.69(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-2 \mathrm{ax}) 1.86(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-2 \mathrm{eq}) 3.53(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1) 4.73(\mathrm{~s}, 2 \mathrm{H},- \\
& \mathrm{OCH} \mathrm{O}-)
\end{aligned}
$$
\]

\hline
\end{tabular}

Group 2: 1,2-Aliphatic cyclic diols.

We submitted to this reaction the quinide (1c) showing a syn diol function in $4 / 5$ which has been transformed into the 1,3-dioxolane derivative (2c). The myo-inositol (1d), having one syn and two anti diol functions, has been transformed into the 1,2-dioxolane-3,4-5,6-(1,3,5-trioxaepane) derivative (2d). No derivative with only 1,3,5-trioxaepane function has been obtained so demonstrating the more easy formation, evidently by sterical reasons, of the 1,3 -dioxolane cycle.

Group 3: Carbohydrates.

We used as substrates the methyl- α-D-galactopyranoside (1e), the methyl- α-D-glucopyranoside (1f) and the methyl- α-D-mannopyranoside (1g). The reaction on the methyl- α-D-galactopyranoside afforded a product showing a 1,3-dioxane function between the hydroxyl groups at C-6 and C-4 (axial) and a 1,3,5-trioxaepane function between the anti C-2 and C-3 hydroxyl groups (2e).
The methyl- α-D-glucopyranoside showed a similar behaviour affording a 1,3 -dioxane cycle between the equatorial hydroxyl group at $\mathrm{C}-4$ and the primary one at $\mathrm{C}-6$, as well as the $1,3,5$-trioxaepane cycle between the anti C-2 and C-3 hydroxyl groups (2f). The methyl- α-D-mannopyranoside afforded on the contrary two different compounds. The first, obtained in high yields, was the expected 2,3 -dioxolane-4,6-(1,3)dioxane derivative(2 g), while the other showed, between the syn hydroxyl groups at C-2 and C-3, a 1,3,5-trioxaepane function instead of the dioxolane one $(\mathbf{3 g})$.
In this case the obtaining of the dioxolane derivative has been hampered by the excessive crowding of cycles.

Group 4: Monohydric alcohols.

The cyclohexanol (1h) treated whit $\mathrm{DMSO} / \mathrm{POCl}_{3}$ in the above conditions gave the dicyclohexylmethylene acetal ($\mathbf{2 h}$) (55\% yields). The major part of cyclohexanol was recovered unchanged, evidently, because the intermolecular reaction is slower than intramolecular one.

1h
Typical experimental procedure: a solution of 1-phenyl-1,3-butanediol (eritro) ($0.1 \div 1.0 \mathrm{~g}$) in DMSO ($1.0+5.0$ $\mathrm{ml})$ was stirred under N_{2} at $65^{\circ} \mathrm{C}$ and then added with POCl_{3} or $\mathrm{SOCl}_{2}(0.16 \div 0.8 \mathrm{ml})$.
After disappearance of the starting material (see table 1) the reaction mixture was diluted with water and extracted more times with CHCl_{3}. After the usual work-up the crude product was cromatographed on Si gel in CHCl_{3}. Yields calculated after purification: (95\%).

To get some informations on the selectivity of the opening of the different cyclic acetals obtained the products $\mathbf{2 e}$ and 3 g were treated in acid conditions at $50^{\circ} \mathrm{C}$ as after described. After ten hours the $1,3,5$-trioxaepane cycle was completely hydrolysed where the 1,3-dioxane ones remained unchanged. The hydrolysis compounds 3 e and 4 g respectively were obtained with 98% yield of purified products. Therefore it is possible to deprotect regioselectively the diols involved in a 1,3,5-trioxaepane function respect to that involved in a 1,3-dioxane one, and that behaviour may cause a further use of this reaction, (see table 2).

Experimental procedure of deprotection: a solution of 4,5-(1,3-dioxane)-2,3-(1,3-dioxolane)-Me- α-Dmannopyranoside (50 mg) in acetone (2.5 ml) and $2 \mathrm{~N} \mathrm{HCl}\left(0.5 \mathrm{ml}\right.$) was stirred at $50^{\circ} \mathrm{C}$. After disappearance of the starting material (10 hours) the reaction mixture was neutralised with DOWEX 11. Crude product was cromatographed on Si gel in $\mathrm{CHCl}_{3} / \mathrm{MeOH}$: 95/5. Yields calculated after purification: (98\%).

Product	Yield (\%)	tren. (h)	$\begin{gathered} {[\alpha]_{\mathrm{D}}} \\ c, \text { solv } \end{gathered}$	Molecular Formula ${ }^{\text {a }}$	${ }^{\mathbf{T}} \mathrm{H}-\mathrm{NMR}$ (CDCl_{3}) $\delta(\mathrm{ppm})$
	98	10	$\begin{gathered} 150.0 \pm 3.2 \\ \left(0.3, \mathrm{CH}_{3} \mathrm{OH}\right) \end{gathered}$	$\begin{aligned} & \mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{8} \\ & (206.08) \end{aligned}$	2.07 (d, 1H, J=8.6 Hz, -OH) 2.38 (d, 1H, J=7.8 Hz, OH) 3.42 ($5,3 \mathrm{H},-\mathrm{OCH}_{3}$ (ax)) 3.63 ($1 \mathrm{H}, \mathrm{H}$ 5ax) 3.85 ($2 \mathrm{H}, \mathrm{H}-3 \mathrm{ax}, \mathrm{H}-6 \mathrm{ax}$) 4.00 ($1 \mathrm{H}, \mathrm{H}-2 \mathrm{ax}$) 4.11 (1H, H-6eq) $4.72\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{O}\right.$) 4.90 (d, 1H, J=3.5 Hz, H-1eq) 5.17 (d, $1 \mathrm{H}, \mathrm{J}=6.4$ $\mathrm{Hz},-\mathrm{OCH}_{2} \mathrm{O}$-).
	98	10	$\begin{gathered} 26.7 \pm 1.8 \\ \left(0.6, \mathrm{CH}_{3} \mathrm{OH}\right) \\ 18.3 \pm 1.6 \\ \left(0.6, \mathrm{CHCH}_{3}\right) \end{gathered}$	$\begin{aligned} & \mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{6} \\ & (206.08) \end{aligned}$	2.51 ($\mathrm{ps}, 2 \mathrm{H},-\mathrm{OH}$) $3.36\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}(\mathrm{ax})\right) 3.5-$ 4.0 (5H, H-2eq, H-4ax, H-5ax, H-6eq, H-6ax) 4.12 (dd, 1H, J=3.8, 9.6 Hz, H-3ax) 4.64 (d, 1H, $\mathrm{J}=6.2 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{O}$) 4.71 (d, $1 \mathrm{H}, \mathrm{J}=1.0 \mathrm{~Hz}, \mathrm{H}-$ 1eq) $5.05\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.2 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{O}\right.$).

Table 2.
(${ }^{\text {a }}$ Satisfactory microanalyses obtained: $\mathrm{C} \pm 0.36, \mathrm{H} \pm 0.15$.)

References:

1. Liptak A., Olah V.A., Kerekgyarto J., Synthesis 1982, 421.
2. Hanessian S., Yang-Chung G., Lavalle P., Pernet A.G., J. Am. Chem. Soc. 1972, 94, 8929.
3. Sato T., Saito Y., Kainosho M., Hata K., Bull. Chem. Soc. Jpn. 1967, 40, 391.
4. Bal B. S., Pinnick H. W., J. Org. Chem. 1979, 44, 3727.
5. Munavu R. M., J. Org. Chem. 1980, 45, 3341.
6. Bartolucci C., Cellai L., Marzano M., Segre A., Brufani M., Filocamo L., Bianco A., Guiso M., Brizzi V., Benedetto A., Di Caro A., Il Farmaco 1995, 50, 587.
